Posted tagged ‘brain injury’

Football helmets protect skulls. They don’t protect brains.

March 16, 2015

The Pediatric Insider

© 2015 Roy Benaroch, MD

A few weeks ago, I wrote about concussions—mild brain injuries caused by trauma. There’s increasing concern that repeated concussions—that is, repeated brain injuries—aren’t good. They can lead to depression, intellectual decline, movement disorders, and other kinds of symptoms that you’d expect from someone whose brain has been injured multiple times.

One tack that athletics departments are taking is to invest in more-expensive helmets. The idea has some appeal—wrap your head in something protective, and then you can bash it into things safely. But there’s a fundamental misunderstanding here. Helmets, the best helmets, can do a really good job at protecting your child’s skull from damage. But no helmet in the world has ever been shown to provide any protection for your child’s brain.

Think about it. The helmet protects the outside of your head, the hair, the skin, the eyes the cheekbones, all of those. People wearing helmets do not get lacerations of the scalp, and they don’t fracture their skulls, because the helmet protects these body parts from damage. But the brain, that is a very different story.

Your brain floats on the inside of your skull, enveloped in fluid. It gets injured not by directly smashing into someone else’s head, or into the ground, or into a windshield. The brain doesn’t strike your steering wheel and it doesn’t get hit by a hockey puck or a boxer’s gloved fist. What strikes your brain, and what causes the damage, is the inside of your own skull.

Picture this: you’re in a speeding car. You, your head, your skull, and your brain are all traveling 60 miles an hour when you swerve off the road into a concrete pole. Very quickly, you and your head stop moving—BAM, you’ve decelerated from 60 mph to zero in just a fraction of a second. If you’re lucky, your head is protected by snapping forward not into the windshield or your steering wheel, but into a relatively-soft air bag. Air bags do a great job to protect skulls and heads. But what happens to your brain? As smart as it might be, brains follow the laws of physics, too. It was just moving at 60 mph, and the thing carrying it, the skull, just stopped. The brain then slams into the front of the skull, from the inside, at 60 mph.

There is no airbag in there to protect the brain. In a car accident, the brain just slams into the inside of the skull. And in a football injury, the same thing happens—the helmet protects the scalp and the head, sure, but the brain still slams into the skull from the inside. Unless they figure out a way to implant a little helmet inside the head, between the brain and the skull, there’s nothing in there protecting the brain.

It’s worse, by the way. The really bad concussions—the most serious brain injuries—come from the brain slamming sideways into the side of the skull, or from rotational forces that shear the cortex, the top thinking part of the brain, away from the base (think of slapping a top from the side and watching it spin. Whee! Brain!) In any scenario, the physics are the same—forces act on the skull to change its motion, and the brain slams into the skull from the inside.

Good sports equipment is still essential for athletes, and I don’t mean to minimize what a good helmet can do. I don’t want poked out eyeballs or broken jaws or caved in skulls, either. But I’d also like to see a more-honest discussion of brain injury in sports, and what we can and cannot do to prevent and mitigate the effects of these injuries. We’re not getting honest info from the helmet manufacturers, that’s for sure.

Concussions are brain injuries

February 19, 2015

The Pediatric Insider

© 2015 Roy Benaroch, MD

Many parents (and even some teenagers) realize that kids are going to be using their brains at some point in their lives. I’m getting more and more questions about the effects of concussions—are they going to lead to trouble, down the road? How can they be prevented and treated?

First: let’s abandon the term “concussion.” It’s a weird word that waters down a much simpler term: traumatic brain injury. A concussion is a mild brain injury caused by trauma. So let’s just call it that, “mild traumatic brain injury.” Wordy, but those words say a lot more to parents and children than “concussion.”

How do you know a brain has been injured? Simply enough, it stops working right. A person who’s had a blow to the head followed by a period of brain-not-working has had a brain injury, a “concussion”. The symptoms could include, after the injury, a period of confusion or dizziness or a feeling that you’re “not all there.” Sometimes, but not usually, there’s a brief loss of consciousness. That worth saying again: people who’ve had a mild traumatic brain injury usually do not get knocked out. They just feel knocked around. Later, there are continued symptoms like headache, dizziness, a “fuzzy brain” feeling; sometimes there are also problems with moodiness or irritability, or trouble with sleep cycles. Again, remember, these are all symptoms of an injured brain.

People understand the concept of injuries. You injure your ankle, you expect to need to rest it. Everyone knows rest is the best way to prevent an injury from getting worse, and rest is the best way to prevent an even-worse re-injury. We instinctively know that during rehabilitation for an injured ankle, you’ll kind of walk and run funny—which puts you at risk for other injuries, too.

All of these concepts are exactly the same for concussion, and that’s easy to explain if you remember to think of a concussion as a “traumatic brain injury”. Rest is the key, to allow the brain to heal, to prevent worsening damage from continued trauma, to prevent re-injury of the brain, and to prevent injury of other body parts because you’re not performing well with an injured brain. See? Easy as an ankle to explain.

Of course, resting a brain isn’t exactly as simple as resting an ankle. We can’t use a sling or an ACE wrap (well, you can, but you’ll look weird and it won’t help.) Resting a brain means, well, brain rest: no intellectual work, no school, no physical exercise. Just like you’d rest an ankle until it felt better, resting a brain after it’s injured should continue until there are no symptoms of injury. No headaches, no sleep problems, no fuzzy brain, no dizziness, no trouble focusing. When all of these symptoms have abated, people with mild traumatic brain injuries should gradually advance to more-intense schooling and activities, step by step, until the patient is back up to full activity. If there’s a step backwards—if brain symptoms begin—do exactly what you’d do if your ankle starts to hurt again. Back off the activity and allow more time to heal.

There’s good evidence that allowing a period of time to rest and heal after a mild traumatic brain injury can help prevent re-injury and longstanding symptoms—but we don’t know exactly how long the rest should be. One recent study showed that to a point, too much rest for too long can actually worsen and extend symptoms. Once symptoms improve, it’s a good idea to start back on activities (start slow and advance step by step) rather than continue through a fixed number of days of rest. We have some work to do to fine tune and individualize the best concussion care advice.

While a single concussion, especially with appropriate treatment, is unlikely to lead to long term problems, there are some sobering concerns about people who’ve had multiple concussions. There’s an increased risk of long term cognitive decline, movement disorders, and depression. And we know many athletes under-report concussions. In one study, 30% of high school football players reported a history of concussion, but only half of those had reported the injury. There may be far more concussions injuring far more high school brains than we appreciate.

As I said, many of those brains are going to be used later. Maybe we ought to try to do a better job keeping them in good shape.